Environmental controls on the landscape-scale biogeography of stream bacterial communities.
نویسندگان
چکیده
We determined the biogeographical distributions of stream bacteria and the biogeochemical factors that best explained heterogeneity for 23 locations within the Hubbard Brook watershed, a 3000-ha forested watershed in New Hampshire, USA. Our goal was to assess the factor, or set of factors, responsible for generating the biogeographical patterns exhibited by microorganisms at the landscape scale. We used DNA fingerprinting to characterize bacteria inhabiting fine benthic organic matter (FBOM) because of their important influence on stream nutrient dynamics. Across the watershed, streams of similar pH had similar FBOM bacterial communities. Streamwater pH was the single variable most strongly correlated with the relative distance between communities (Spearman's p = 0.66, P < 0.001) although there were other contributing factors, including the quality of the fine benthic organic matter and the amount of dissolved organic carbon and nitrogen in the stream water (P < 0.05 for each). There was no evidence of an effect of geographic distance on bacterial community composition, suggesting that dispersal limitation has little influence on the observed biogeographical patterns in streams across this landscape. Cloning and sequencing of small-subunit rRNA genes confirmed the DNA fingerprinting results and revealed strong shifts among bacterial groups along the pH gradient. With an increase in streamwater pH, the abundance of acidobacteria in the FBOM bacterial community decreased (from 71% to 38%), and the abundance of proteobacteria increased (from 11% to 47%). Together these results suggest that microorganisms, like "macro"-organisms, do exhibit biogeographical patterns at the landscape scale and that these patterns may be predictable based on biogeochemical factors.
منابع مشابه
Microbial Biogeography of Arctic Streams: Exploring Influences of Lithology and Habitat
Terminal restriction fragment length polymorphism and 16S rRNA gene sequencing were used to explore the community composition of bacterial communities in biofilms on sediments (epipssamon) and rocks (epilithon) in stream reaches that drain watersheds with contrasting lithologies in the Noatak National Preserve, Alaska. Bacterial community composition varied primarily by stream habitat and secon...
متن کاملLarge-scale environmental controls on microbial biofilms in high-alpine streams
Glaciers are highly responsive to global warming and important agents of landscape heterogeneity. While it is well established that glacial ablation and snowmelt regulate stream discharge, linkage among streams and streamwater geochemistry, the controls of these factors on stream microbial biofilms remain insufficiently understood. We investigated glacial (metakryal, hypokryal), groundwater-fed...
متن کاملBiogeography of bacterioplankton in lakes and streams of an Arctic tundra catchment.
Bacterioplankton community composition was compared across 10 lakes and 14 streams within the catchment of Toolik Lake, a tundra lake in Arctic Alaska, during seven surveys conducted over three years using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified rDNA. Bacterioplankton communities in streams draining tundra were very different than those in streams draining lakes. Communi...
متن کاملVariation in dissolved organic matter controls bacterial production and community composition.
An ongoing debate in ecology revolves around how species composition and ecosystem function are related. To address the mechanistic controls of this relationship, we manipulated the composition of dissolved organic matter (DOM) fed to aquatic bacteria to determine effects on both bacterial activity and community composition. Sites along terrestrial to aquatic flow paths were chosen to simulate ...
متن کاملThe diversity and biogeography of soil bacterial communities.
For centuries, biologists have studied patterns of plant and animal diversity at continental scales. Until recently, similar studies were impossible for microorganisms, arguably the most diverse and abundant group of organisms on Earth. Here, we present a continental-scale description of soil bacterial communities and the environmental factors influencing their biodiversity. We collected 98 soi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecology
دوره 88 9 شماره
صفحات -
تاریخ انتشار 2007